Degenerate quantum codes for Pauli channels.
نویسندگان
چکیده
A striking feature of quantum error correcting codes is that they can sometimes be used to correct more errors than they can uniquely identify. Such degenerate codes have long been known, but have remained poorly understood. We provide a heuristic for designing degenerate quantum codes for high noise rates, which is applied to generate codes that can be used to communicate over almost any Pauli channel at rates that are impossible for a nondegenerate code. The gap between nondegenerate and degenerate code performance is quite large, in contrast to the tiny magnitude of the only previous demonstration of this effect. We also identify a channel for which none of our codes outperform the best nondegenerate code and show that it is nevertheless quite unlike any channel for which nondegenerate codes are known to be optimal.
منابع مشابه
Is A Quantum Stabilizer Code Degenerate or Nondegenerate for Pauli Channel?
core of quantum decoding network and is also the key step of recovery. The definitions of the bit-flip error syndrome matrix and the phase-flip error syndrome matrix were presented, and then the error syndromes of quantum errors were expressed in terms of the columns of the bit-flip error syndrome matrix and the phase-flip error syndrome matrix. It also showed that the error syndrome matrices o...
متن کاملOn the iterative decoding of sparse quantum codes
We address the problem of decoding sparse quantum error correction codes. For Pauli channels, this task can be accomplished by a version of the belief propagation algorithm used for decoding sparse classical codes. Quantum codes pose two new challenges however. Firstly, their Tanner graph unavoidably contain small loops which typically undermines the performance of belief propagation. Secondly,...
متن کاملEfficient Quantum Polar Coding
Polar coding, introduced 2008 by Arıkan, is the first (very) efficiently encodable and decodable coding scheme whose information transmission rate provably achieves the Shannon bound for classical discrete memoryless channels in the asymptotic limit of large block sizes. Here we study the use of polar codes for the transmission of quantum information. Focusing on the case of qubit Pauli channel...
متن کاملErratum to: "Fast quantum codes based on Pauli block Jacket matrices"
Jacket matrices motivated by the center weight Hadamard matrices have played an important role in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a design approach for the Pauli block jacket matrix achieved by substituting some Pauli matrices for all elements of common matrices. Since, the well-known Pauli matrices have been widely utilized for...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 98 3 شماره
صفحات -
تاریخ انتشار 2007